Publication

2022

  • Tian Yu Liu, Parth Agrawal, Allison Chen, Byung-Woo Hong, Alex Wong. "Monitored Distillation for Positive Congrudent Depth Completion". European Conference on Computer Vision (ECCV). 2022. [PDF]

  • Kensuke Nakamura, Stefano Soatto, Byung-Woo Hong. "Stochastic batch size for adaptive regularization in deep network optimization". Pattern Recognition. 2022. [PDF]

  • Patrick Martin, Hyobin Kim, Cecilia Lovkvist, Byung-Woo Hong, Kyoung Jae Won. "Vesalius: high-resolution in silico anatomization of spatial transcriptomic data using image analysis". Molecular Systems Biology. 2022. [PDF]

  • Tian Yu Liu, Parth Agrawal, Allison Chen, Byung-Woo Hong, Alex Wong. "Monitored Distillation for Positive Congrudent Depth Completion". arXiv. 2022. [PDF]

  • Kensuke Nakamura, Bong-Soo Sohn, Kyoung-Jae Won, Byung-Woo Hong. "Regularization in network optimization via trimmed stochastic gradient descent with noisy label". 2022. [PDF]

2021

  • Dahye Kim, Byung-Woo Hong. "Unsupervised Segmentation incorporating Shape Prior via Generative Adversarial Networks". International Conference on Computer Vision (ICCV). 2021. [PDF]

  • Alex Wong, Xiaohan Fei, Byung-Woo Hong, and Stefano Soatto. "An Adaptive Framework for Learning Unsupervised Depth Completion". In the Robotics and Automation Letters (RA-L) 2021 and Proceedings of International Conference on Robotics and Automation (ICRA) 2021. [PDF]

  • Alex Wong, Allison Chen, Yangchao Wu, Safa Cicek, Alexandre Tiard, Byung-Woo Hong. "Small Lesion Segmentation in Brain MRIs with Subpixel Embedding". International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) Brain Lesion Workshop 2021.

  • Kensuke Nakamura, Stefano Soatto, Byung-Woo Hong. "Block-Cyclic Stochastic Coordinate Descent for Deep Neural Networks". Neural Networks. 2021. [PDF]

  • Dahye Kim, Byung-Woo Hong. "Unsupervised Feature Elimination via Generative Adversarial Networks: Application to Hair Removal in Melanoma Classification". 2021.

  • Kensuke Nakamura, Bilel Derbel, Kyoung-Jae Won, Byung-Woo Hong. "Learning-Rate Annealing Methods for Deep Neural Networks". 2021.

  • Yuna Han, Byung-Woo Hong. "Deep Learning Based on Fourier Convolutional Neural Network Incorporating Random Kernels". 2021.

  • Hyun-Tae Choi, Byung-Woo Hong. "Unsupervised Object Segmentation based on Bi-partitioning Image Model integrated with Classification". 2021.

  • B. Derbel, G. Pruvost, Byung-Woo Hong. "Enhancing Moea/d with Escape Mechanisms". IEEE Congress on Evolutionary Computation. 2021.

2020

  • Kensuke Nakamura, Stefano Soatto, Byung-Woo Hong. "Stochastic batch size for adaptive regularization in deep network optimization". arXiv. 2020. [PDF]

  • Byung-Woo Hong, Jakeoung Koo, Martin Burger, Stefano Soatto. “Adaptive Regularization for Imaging Problems in a Variational Framework“. IEEE Transactions on Image Processing (TIP). 2020. [PDF]

  • Hyo-Hun Kim, Byung-Woo Hong. "Segmentation Neural Network incorporating Scale-Space in the Application of Cardiac MRI". 2020.

  • Numonov Sardorbek, Bong-Soo Sohn, Byung-Woo Hong. "Coherence Enhancement based on Recursive Anisotropic Scale-Space with Adaptive Kernels". 2020.

2019

  • Alex Wong, Byung-Woo Hong, Stefano Soatto. “Bilateral Cyclic Constraint and Adaptive Regularization for Monocular Depth Prediction“. arXiv. 2019. [PDF]

  • Junghee Cho, Junseok Kwon, Byung-Woo Hong. "Adaptive Regularization via Residual Smoothing in Deep Learning Optimization". arXiv. 2019. [PDF]

  • Kensuke Nakamura, Byung-Woo Hong. "Adaptive Weight Decay for Deep Neural Networks". arXiv. 2019. [PDF]

2018

  • Kensuke Nakamura, Stefano Soatto, Byung-Woo Hong. “Block-Cyclic Stochastic Coordinate Descent for Deep Neural Networks“. arXiv. 2018. [PDF]

2017

  • Ganesh Sundaramoorthi, Naeemullah Khan, Byung-Woo Hong. “Coarse-to-Fine Segmentation With Shape-Tailored Continuum Scale Spaces“. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii, July. 2017. [PDF]

  • Byung-Woo Hong, Ja-Keoung Koo, Hendrik Dirks, Martin Burger. “Adaptive Regularization in Convex Composite Optimization for Variational Imaging Problems“. German Conference on Pattern Recognition. 2017. [PDF]

  • Byung-Woo Hong, Ja-Keoung Koo, Martin Burger, Stefano Soatto. “Adaptive Regularization of Some Inverse Problems in Image Analysis“. arXiv. 2017. [PDF]

  • Byung-Woo Hong, Ja-Keoung Koo, Stefano Soatto. “Multi-Label Segmentation via Residual-Driven Adaptive Regularization“. arXiv. 2017. [PDF]

  • Kensuke Nakamura, Byung-Woo Hong. “Hierarchical Image Segmentation via Recursive Superpixel with Adaptive Regularity“. Journal of Electronic Imaging. 2017. [PDF]

  • Ja-Keoung Koo, Bong-Soo Sohn, Byung-Woo Hong. “Segmentation of Left Ventricle in Cardiac MRI via Contrast-Invariant Deformable Template“. Journal of Medical Imaging and Health Informatics. 2017. [PDF]

2016

  • Ganesh Sundaramoorthi, Naeemullah Khan, Byung-Woo Hong. “Coarse-to-Fine Segmentation With Shape-Tailored Scale Spaces“. arXiv. 2016. [PDF]

  • Byung-Woo Hong, Ja-Keoung Koo, Hendrik Dirks, Martin Burger. “Adaptive Parameter Balancing for Composite Optimization Problems in Imaging“. arXiv. 2016. [PDF]

  • Kensuke Nakamura, Byung-Woo Hong. “Fast-convergence superpixel algorithm via an approximate optimization“. Journal of Electronic Imaging. Oct. 2016. [PDF]

  • Ja-Keoung Koo, Byung-Woo Hong. “Segmentation of Left Ventricle in Cardiac MRI via Region-Dependent Motion Estimation“. Journal of Medical Imaging and Health Informatics. 2016. [PDF]

2015

  • Ja-Keoung Koo, Hyo-Hun Kim, Byung-Woo Hong. “Joint estimation of motion and illumination change in a sequence of images“. Journal of Electronic Imaging. 24(5). Oct. 2015. [PDF]

  • Byung-Woo Hong, Stefano Soatto. “Shape Matching using Multiscale Integral Invariants“. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). Jan. 2015. [PDF]

  • Ki-Seong Lee, Byung-Woo Hong, Youngmin Kim, Jaeyeop Ahn, Chan-Gun Lee. “Split-Jaccard Distance of Hierarchical Decompositions for Software Architecture“. March. 2015. [PDF]

2014

  • Omar Arif, Ganesh Sundaramoorthi, Byung-Woo Hong, Anthony Yezzi. “Tracking via Motion Esimation with Physically Motivated Inter-Region Constraints“. IEEE Transactions on Medical Imaging (TMI). 2014. [PDF]

  • Byung-Woo Hong, Ganesh Sundaramoorthi. “Fast Label: Easy and Efficient Optimization of Joint Multi-Label and Estimation Problems“. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbia, Ohio, Jun. 2014. [PDF]

  • Young-Woo Kim, Byung-Woo Hong, Seung-Ja Kim, Jong-Hyo Kim. “A Population-based Tissue Probability Map-Driven Level Set Method for Fully Automated Mammographic Density Estimations“. Medical Physics. 2014. [PDF]

  • Sun Jin Lee, Semin Chong, Kyungho Kang, Joonho Hur, Byung-Woo Hong, Hyun Jung Kim, Soo Jin Kim. “Semi-automated thyroid volumetry using three-dimensional computed tomography: Prospective comparative study of thyroid volumes measured by two-dimensional ultrasonography, two-dimensional computed tomography and specimen“. American Journal of Roentgenology. 2014. [PDF]

  • Hyo-Hoon Kim, Byung-Woo Hong. “An Intrinsic Image Representation and its Application to Left Ventricle Segmentation in Cardiac MRI Images“. Journal of Medical Imaging and Health Informatics. 2014. [PDF]

2013

  • Byung-Woo Hong, Zhaojin Lu, and Ganesh Sundaramoorthi. “A New Model and Simple Algorithms for Multi-label Mumford-Shah Problems“. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland, Oregon, Jun. 2013. [PDF]

  • Jonghye Woo, Piotr J. Slomka, C.-C. Jay Kuo, Byung-Woo Hong. “Multiphase Segmentation using an Implicit Dual Shape Prior: Application to Detection of Left Ventricle in Cardiac MRI“. Computer Vision and Image Understanding (CVIU). [PDF]

  • Byung-Woo Hong. “Joint Estimation of Shape and Deformation for the Detection of Lesions in Dynamic Contrast-Enhanced Breast MRI“. Physics in Medicine and Biology (PMB). vol 58, 2013. [PDF]

  • Bo-Young Park, Hyo-Hun Kim, Byung-Woo Hong. “A Multilabel Texture Segmentation Based on Local Entropy Signature“. Mathematical Problems in Engineering. vol 2013, 2013. [PDF]

  • Jeong Heon Kim, Bo-Young Park, Farhan Akram, Byung-Woo Hong, Kwang Nam Choi. “Multipass Active Contours for an Adaptive Contour Map“. Sensors. vol 13, 2013. [PDF]

2012

  • Ganesh Sundaramoorthi, Byung-Woo Hong, Anthony Yezzi. “Motion and Deformation Estimation from Medical Imagery by Modeling Sub-Structure Interaction and Constraints“. Computational Representation of Objects in Images (CompImage). Rome, 2012. [PDF]

2011

  • B.-W. Hong, K. Ni, and S. Soatto. “Entropy-scale Profiles for Texture Segmentation“. International Conference on Scale Space and Variational Methods in Computer Vision (SSVM). Israel, May. 2011. [PDF]

2010

  • Jonghye Woo, Damini Dey, Victor Cheng, Byung-Woo Hong, Amit Ramesh, Ganesh Sundaramoorthi, Ryo Nakazato, Daniel Berman, Guido Germano, C.-C. Jay Kuo, and Piotr Slomka. “Nonlinear Registration of Serial Coronary CT Angiography (CCTA) for Assessment of Changes in Atherosclerotic Plaque“. Medical Physics, 2010. [PDF]

  • Jonghye Woo, Piotr Slomka, Damini Dey, Victor Cheng, Amit Ramesh, Byung-Woo Hong, Daniel Berman, C.-C. Jay Kuo, Guido Germano. “Geometric Feature-based Multi-modal Image Registration of Contrast-enhanced Cardiac CT with Gated Myocardial Perfusion SPECT“. Medical Physics, 2010. [PDF]

  • B.-W. Hong, and B.-S. Sohn. “Segmentation of Regions of Interest in Mammograms in a Topographic Approach“. IEEE Transactions on Information Technology in BioMedicine. 2010. [PDF]

2009

  • Jonghye Woo, Piotr Slomka, Damini Dey, Victor Cheng, Amit Ramesh, Byung-Woo Hong, Daniel Berman, C.-C. Jay Kuo, Guido Germano. “Automated multi-modality registration of 64-slice coronary ct angiography with myocardial perfusion spect“. IEEE International Symposium on Biomedical Imaging (ISBI). Boston, Massachusetts, Jun., 2009. [PDF]

  • K. Ni, B.-W. Hong, S. Soatto, and T. Chan. “Unsupervised Multiphase Segmentation: a Recursive Approach“. Computer Vision and Image Understanding (CVIU). 2009. [PDF]

  • B.-W. Hong, S. Soatto, and L. Vese. “Enforcing Local Context into Shape Statistics“. Advances in Computational Mathematics. 2009. [PDF]

  • J.-H. Woo, B.-W. Hong, D. Dey, G. Sundaramoorthi, A. Ramesh, G. Germano, V. Cheng, J. Kuo, and P. Slomka. “Feature-based Non-rigid Volumne Registration of Serial Coronary CT Angiography (CCTA)“. SPIE Symposium on Medical Imaging. Lake Buena Vista, Florida, Feb., 2009. [PDF]

  • J.-H. Woo, B.-W. Hong, A. Ramesh, J. Kuo, and P. Slomka. “Curve Evolution with a dual shape similarity and its application to segmentation of left ventricle“. SPIE Symposium on Medical Imaging. Lake Buena Vista, Florida, Feb., 2009. [PDF]

  • J.-H. Woo, B.-W. Hong, C.-H. Hu, K. Shung, and J. Kuo. “Non-rigid Ultrasound Image Registration Based on Intensity and Local Phase Information“. Journal of Signal Processing Systems. 2009. [PDF]

2008

  • B.-W. Hong, K. Ni, and S. Soatto. “Scale of Texture and its Application to Segmentation“. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage, Alaska, Jun. 2008. [PDF]

  • S. Thiruvenkadam, T. Chan, and B.-W. Hong. “Segmentation under Occlusions using Selective Shape Prior“. SIAM Journal on Imaging Sciences (SIAM JIS). 2008. [PDF]

  • M. Mellor, B.-W. Hong, and M. Brady. “Locally rotation, contrast and scale invariant descriptors for texture analysis“. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). vol. 30, no. 1, 2008. [PDF]

  • J.-H. Woo, B.-W. Hong, S. Kumar, I. B. Ray, and C.-C. J. Kuo. “Multi-modal Data Integration for ComputerAided Ablation of Atrial Fibrillation“. Journal of Biomedicine and Biotechnology. 2008. [PDF]

2007

  • J.-H. Woo, B.-W. Hong, S. Kumar, I. B. Ray, and C.-C. J. Kuo. “Reconstruction incorporating Shape Prior for Computer-Aided Ablation of Atrial Fibrillation“. International Conference on Frontiers in the Convergence of Bioscience and Information Technologies. Jeju, Korea, Oct. 2007. [PDF]

  • T. Chan, S. Thiruvenkadam, and B.-W. Hong. “Segmentation under Occlusions using Selective Shape Prior“. Scale Space Variational Methods (SSVM). Ischia, Italy, May. 2007. [PDF]

2006

  • S. Manay, D. Cremers, B.-W. Hong, A. Yezzi, and S. Soatto. “Shape Matching via Integral Invariants“. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). vol. 28, no. 10, 2006. [PDF]

  • B.-W. Hong, E. Prados, L. Vese, and S. Soatto. “Shape Representation based on Integral Kernels: Application to Image Matching and Segmentation“. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, Jun. 2006. [PDF]

  • S. Manay, B.-W. Hong, D. Cremers, A. Yezzi, and S. Soatto. “Integral Invariants and Shape Matching“. Book Chapter: Statistics and Analysis of Shapes. Hamid Krim and Anthony Yezzi (Eds.) 2006. [PDF]

2005

  • B.-W. Hong, and M. Brady. “Structural Comparison of Mammogram Pairs“. British Machine Vision Conference (BMVC). Oxford, Sep. 2005. [PDF]

2004

  • B.-W. Hong, M. Mellor, S. Soatto, and M. Brady. “Combining Topological and Geometric Features of Mammograms to Detect Masses“. Medical Image Understanding and Analysis (MIUA). London, Sep. 2004. [PDF]

  • S. Manay, B.-W. Hong, A. Yezzi, and S. Soatto. “Integral Invariant Signatures“. European Conference on Computer Vision (ECCV). Prague, May. 2004. [PDF]

2003

  • B.-W. Hong, and M. Brady. “A Topographic Representation for Mammogram Segmentation“. Medical Image Computing and Computer Assisted Intervention (MICCAI). Montreal. Nov. 2003. [PDF]

  • B.-W. Hong, and M. Brady. “Segmentation of Mammograms in Topographic Approach“. IEE International Conference on Visual Information Engineering. Guildford. Jul. 2003. [PDF]