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Shape Matching using
Multiscale Integral Invariants

Byung-Woo Hong, Stefano Soatto, Fellow, IEEE

Abstract —We present a shape descriptor based on integral kernels. Shape is represented in an implicit form and it is characterized
by a series of isotropic kernels that provide desirable invariance properties. The shape features are characterized at multiple scales
which form a signature that is a compact description of shape over a range of scales. The shape signature is designed to be invariant
with respect to group transformations which include translation, rotation, scaling, and re�ection. In addition, the i ntegral kernels that
characterize local shape geometry enable the shape signature to be robust with respect to undesirable perturbations while retaining
discriminative power. Use of our shape signature is demonstrated for shape matching based on a number of synthetic and real
examples.

Index Terms —Shape matching, Shape descriptor, Integral invariant, Scale invariant, Wasserstein distance.
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1 INTRODUCTION

SHAPE analysis is a fundamental problem in computer
vision and image processing, and affects a variety of

application domains. It plays a key role in understanding or
identifying objects in images [1]–[5]. The intrinsic geometry
provides robust signatures for recognition under the various
nuisances of image formation, and subsequently the shape of
objects has been widely used in their comparative analysis.A
shape can be represented in an explicit form by consecutive
line segments or higher order curves obtained from a set of
points [6], [7]. This representation is ef�cient due to its low
dimensionality, however it is dif�cult to deal with topological
changes that account for splitting or merging of shapes since
such topological change requires re-parameterization. Anal-
ternative approach is to represent shapes implicitly as compact
regions enclosed by planar contours [8], [9]. A region-based
shape representation makes it easy to deal with topological
changes, and is robust to perturbations despite its higher
dimension. Shape is a property of geometric objects (e.g.,
closed planar contours) that is invariant with respect to a
certain transformation group, and is therefore represented by
an equivalent class under the same group [10]. The geometric
properties of shape are characterized by statistics or deter-
ministic functions of the data, leading to “features” that are
invariant to such transformations. This affords compact storage
and ef�cient analysis of geometric objects.
The role of invariants under various group transformations
in computer vision or pattern recognition has been studied
extensively in shape representation [11], [12], shape match-
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ing [13], [14], quality control [15], [16], and object recog-
nition [17], [18]. A variety of features that are invariant to
speci�c transformations has been investigated [19]–[24].For
example, algebraic entities such as lines or polynomial curves
have been used for constructing primitive invariants based
on a global shape descriptor [25], [26]. A shape descriptor,
called shape context, that consists of a radial histogram ofthe
relative coordinates has been applied to shape matching [13].
Invariants based on differential computations with respect to
actions of various Lie groups have been addressed [27]–[30].
In particular, curvature has been widely used as a shape
descriptor based on an explicit shape representation due toits
invariant properties and computational convenience [31],[32].
In order to avoid undesirable parameterization, a signature
consisting of curvature and its �rst derivative has been intro-
duced [33], [34]. A modi�ed formulation in the computation of
the �rst derivative of curvature for numerical stability has been
presented [35]. Signatures based on differential invariants are
generally sensitive to noise which has led to the development
of semi-differential invariants in order to avoid the computa-
tion of high-order derivatives that may amplify noise [36]–
[39]. A major advantage in using differential invariants is
providing locality which is a useful property for overcoming
occlusions [40], [41]. However, the fundamental drawback of
differential invariants is that high-order derivatives have to be
computed, and consequently the effect of noise is ampli�ed.
Scale-space approaches via diffusion processes have been
developed to reduce such undesirable effects [42], [42]–[45].
For example, a curvature scale-space constructed based on a
series of Gaussian kernels has been applied to shape match-
ing problems where the extrema of curvature are observed
across scales [46]. To overcome the limitations of differential
invariants, there have been attempts to derive invariants based
on integral computations which are called integral invariants.
Among various integral measures, statistical approaches to
describe invariants have been introduced using moments [47],
[48]. Moment invariants under af�ne transformation have been
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derived from classical moment invariants [47]. The error
analysis and analytic characterization of moment descriptors
have been studied in [49]. The Fourier transform has also
been applied to obtain integral invariants [50]–[52] with a
curve represented by a set of Fourier coef�cients. In this
method, high-order Fourier coef�cients are known to be prone
to large variations in the presence of noise. Alternatives have
been proposed using wavelets [53] and potentials [54]. One
major drawback of integral invariants is that they are global
descriptors, and are thus sensitive to the effects of occlusions.
Diffusion geometry approaches has been applied to shape
matching problems based on the Laplace-Beltrami operator
for establishing correspondences between shapes [55], [56].
The Gromov-Hausdorff distance has been used as a similar
measure between shapes represented by point clouds [57].
In the attempt to deal with shape matching problems under
articulations, a shape decomposition into convex parts fol-
lowed by af�ne normalization procedure has been proposed
to construct an invariant representation to articulation of
3D objects projected onto 2D planar shapes [58]. Another
approach to shape matching based on shape decomposition has
been presented in [59] where a shape contour is decomposed
into base and strand structures using a shape tree constructed
via a triangulation technique, and a matching algorithm is per-
formed for corresponding base structures and strand structures,
respectively.
An integral invariant based on the convolution with isotropic
kernels has been developed to achieve insensitivity to noise
while preserving spatial locality, which enables robustness
with respect to occlusions [60] where the signature of the
proposed integral invariant is applied for shape matching.In
this method, a shape is represented by a parameterized curve
in an explicit form which requires computationally expensive
re-parameterizations in the presence of topological changes.
The local descriptor based on integral invariants preserves
spatial locality and the matching between two shapes is cast
as �nding correspondences between the contours. In one
study [61], integral invariants were developed by applyingthe
convolution of isotropic kernels to the Heaviside functionof
a level set function which is an implicit representation. This
shape descriptor has been shown to be robust with respect to
noise due to its integral nature and insensitive to topological
changes. The shape matching scheme based on this integral
invariant has been integrated into the segmentation process
as a shape prior. In these kernel-based integral invariantson
the implicit shape representation, local geometric properties
of shape are characterized simply at a speci�c scale using a
�xed kernel size. However, it is often desired to analyze shape
features at multiple scales since most geometrical feature
characteristics vary with scale.
In this work, we present a novel shape descriptor that is in-
variant to rotation, translation, scaling, and re�ection based on
integral kernels. The proposed integral invariants are computed
based on implicit shape representation, and at multiple scales.
The invariants computed at all scales are then concatenated
as a single compact global descriptor, and the Wasserstein
distance [62] is used to measure the dissimilarity between
two shapes. The invariant property of our shape descriptor

is achieved through the computation of local shape features
based on isotropic kernels, which is proven analytically. The
characteristic power of the shape descriptor forming a signa-
ture that encodes shape features at a range of scales from �ne
to coarse is demonstrated through a variety of synthetic and
real examples. The robustness and effectiveness of our shape
descriptor are tested in shape matching experiments.

2 MULTISCALE INTEGRAL INVARIANTS

In this section, we de�ne a shape feature based on an isotropic
kernel which possesses desirable invariance properties. A
range of kernel sizes are employed to characterize shape
features at multiple scales providing a shape descriptor asa
function of feature scale. We �rst de�ne a shape as a region
D � 
 where 
 is the domain of shape and we represent
shapeD using the characteristic function� D (x) for any spatial
locationx 2 
 as de�ned by:

� D (x) =
�

1; x 2 D
0; x 2 
 nD:

(1)

This is an implicit shape representation which enables han-
dling topological changes naturally and can be integrated into
the level set framework that has been widely used in shape
matching, segmentation, etc. [63]–[65].

2.1 Local Shape Feature

Fig. 1. [Integral Invariant] The graphical illustration for the computation

of the proposed shape feature based on the Gaussian kernel at four

different sample locations on a synthetic shape example. The circular

shape represents a Gaussian kernel and the while region represents

a shape. The value of the shape feature at each point in the shape

region is obtained by the integration of the multiplication between the

Gaussian kernel and the characteristic function for the complementary

region of the shape, and is represented by the area colored in green with

a Gaussian weight. It may be noted that the shape feature value at point

c is zero since there is no overlap between the characteristic kernel and

the complementary region of the shape and the shape feature value at

point a is greater than the shape feature value at point b.

For a given regionD that may be either simply or multiply
connected, we introduce a shape featureF �

D characterizing
local geometric properties ofD at a given scale� using a
kernelG� as follows:

F �
D (x) = � D (x) � (1 � G� � � D (x)) ; (2)

whereG� is a normalized Gaussian kernel with the standard
deviation� > 0 in 2-dimension as de�ned by:

G� (x) =
1

2�� 2 e� k x k 2

2 � 2 : (3)
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Fig. 2. [Shape feature] Examples of the proposed shape features for a

synthetic shape at multiple feature scales based on Gaussian kernels.

(a) Original shape. (b)–(e) Shape features based on Gaussian kernels

with from �ner to coarser feature scales and the feature valu es are

represented using a color coding scheme that ranges from blue for 0

to red for 1 as the shape feature value ranges from 0 to 1.

The feature valueF �
D at each point within a shapex 2 D

is computed by the integration of the multiplication between
the Gaussian kernelG� and the characteristic function for
the complementary region of the shapeD c = 
 nD over the
shape regionD. This can be interpreted as the area of the
complementary region of the shape weighted by the Gaussian
kernel. The proposed shape feature is designed to develop
a descriptor that characterizes local geometric property of
shape leading to robustness to occlusion, achieves invariance
to various transformations, and bases on the integral operation
in its computation leading to insensitivity to insigni�cant
geometric perturbations. A shape region is represented by
the characteristic function that de�nes the shape in a binary
form, which is then convolved with Gaussian kernel in the
characterization of local geometric property of shape. The
convolution of a binary function with a Gaussian kernel
is related to local geometric properties of the shape. The
convolution is an integral operation that is effective to make
our shape feature insensitive to noise and the use of an
isotropic kernel such as Gaussian kernel enables the shape
feature to be invariant to isometries that include rigid motions
and re�ections. Fig. 1 shows the graphical illustration for
the computation of the proposed shape feature based on the
Gaussian kernel that is represented by the circular shape at
four different sample locations on a synthetic shape example
that is represented by the white region. The value of the shape
feature at each point in the shape region is obtained by the
weighted area of the intersection between the kernel and the
complementary region of the shape by the Gaussian kernel,
which is shown are the area colored in green in the �gure. It
may be noted that the shape feature value at pointc is zero
since there is no overlap between the characteristic kerneland
the complementary region of the shape. It is shown that the
shape feature value at pointa is greater than the shape feature
value at pointb. The feature thus de�ned entails a notion
of regularized curvature and its associated scale-space [46].
In the curvature scale-space, the shape boundary is deformed
across scales due to the convolution with Gaussian kernels at
varying scales, yielding undesirable geometric distortion as the
kernel size increases. In contrast, our proposed shape feature
characterizes shape at varying feature scales while preserving
the geometric properties of the shape boundary. A graphical
illustration of our shape features at different scales for a
synthetic shape is presented in Fig. 2 where the original shape

is represented by a characteristic function in (a) and its shape
features based on Gaussian kernels with from �ner to coarser
scales are shown in (b)–(d). The value for the shape feature
is represented by a color for the visualization purpose using a
color coding scheme that ranges from blue for 0 to red for 1 as
the shape feature value ranges from 0 to 1. The computation
of our shape feature is restricted within the interior of the
shape boundary which is precisely preserved by a non-linear
operation across scales in contrast to a Gaussian scale-space
that diffuses shape and deforms its boundary. One of the
advantages of our shape feature is that it is a local descriptor
and thus robust to occlusions. In addition, its computation
is based on convolution as opposed to differentiation that
is sensitive to noise, and this integral operation naturally
discounts noise in a manner controlled by the kernel size. The
choice of Gaussian kernel is for mathematical convenience
as well as for its invariance properties. It is noted that any
kernel other than Gaussian can be applied for de�ning the
shape feature, but its characterization and invariance properties
may differ depending on the kernel characteristics.

2.2 Shape Signature

Shapes of interest often comprise constituent geometric parts
of various scales, which is a motivation of our multiscale
approach to shape analysis. For a given shape, we propose
a scheme based on integral kernels. The shape feature is
computed constructing a scale-space. From the obtained shape
features we apply an integral invariant function with respect
to group transformations that include translation, rotation,
scaling and re�ection. A novel shape descriptor is developed
by applying an integral invariant to the shape features at a
range of scales forming a signature function of scale. The
proposed shape signatureSD (� ) of shapeD at scale� is
de�ned by:

SD (� ) =

R

 F �

D (x) dx
R

D dx

=

R

 � D (x) � (1 � G� � � D (x)) dx

R

 � D (x) dx

; (4)

where� is given as:

� = �

s Z



� D (x) dx: (5)

The shape signature is obtained by the integration of the
feature values over the shape domain where the feature value
is normalized by the area of the shape in order to achieve
scale invariance. In the analysis of shape, the signature is
obtained at a range of scales in order to capture shape char-
acteristics at varying scales. The range of the shape signature
is 0 � S D (� ) � 1 for any shapeD as follows:

lim
� ! 0

SD (� ) = lim
� ! 0

R

 � D (x) � (1 � G� � � D (x)) dx

R

 � D (x) dx

=

R

 � D (x) � (1 � � D (x)) dx

R

 � D (x) dx

= 0 : (6)
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lim
� !1

SD (� ) = lim
� !1

R

 � D (x) � (1 � G� � � D (x)) dx

R

 � D (x) dx

=

R

 � D (x) � 1dx
R


 � D (x) dx
= 1 : (7)

These relations hold due to:

lim
� ! 0

G� � � D (x) =
Z

R2
lim
� ! 0

G� (x � y) � � D (y)dy

=
Z

R2
� (x � y) � � D (y)dy = � (x) � � D (x) = � D (x)

lim
� !1

G� � � D (x) = lim
� !1

Z

D

1
2�� 2 e� j x � y j 2

� 2 dy

= lim
� !1

1
2�� 2

Z

D
e� j x � y j 2

� 2 dy � lim
� !1

1
2�� 2

Z

D
1 dy = 0 :

For a graphical illustration, we present the characteristics of
the shape feature in Fig. 2 and the shape signature in Fig. 5
using a simple yet illustrative example. In Fig. 2, for a given
shape in (a) the shape features at different scales are presented
in (b)–(e) which show the effect of scale. The shape signature
that encodes shape features at a range of scales is presented
in Fig. 5 where thex-axis represents the feature scale in a log
scale and they-axis represents the feature signature.

2.2.1 Robustness to Noise

(a) original (b) std=1 (c) std=2 (d) std=4 (e) std=8

Fig. 3. [Noisy shape] Examples of a shape and its noisy shapes at

different noise levels. (a) Original shape. (b)–(e) Noisy shapes at varying

levels of additive Gaussian noise with the given standard deviation.

Our shape descriptor is robust to noise due to the integral
computation that diffuses zero-mean noise up to the given fea-
ture scale. In addition, such robustness is illustrated pictorially
in Fig. 3 where shapes with different levels of additive noise
are shown in (b)–(e) with the noise standard deviation = 1,
2, 4, 8, respectively and in Fig. 5 (a) where the signatures of
the shapes shown in Fig. 3 are presented. The discrepancy of
the signatures of the noisy shapes from the signature of the
original shape re�ects the level of noise present. The noisein
the shape affects the formation of the signature curve at the
range of feature scales that are related to the level of noise.

2.2.2 Invariance
Invariance to nuisance transformations is desirable in shape
matching, indexing, and ultimately recognition, since it en-
ables bypassing the initial alignment as a preprocessing step.
Thus, our shape signatureSD (� ) is designed to be invari-
ant with respect to the group transformation which includes
translation, rotation, scaling and re�ection. This implies that
if � D 0 = � D � g; g(x) = sRx + t; wheres 6= 0 is a scalar,t is
a translation vector, andR is an orthogonal matrix that repre-
sents rotations or re�ections, thenSD 0(� ) = SD (� ); 8� � 0.

(a) D1 (b) D2 (c) D3 (d) D4 (e) D5

Fig. 4. [Equivalent shape] Examples of equivalent shapes modulo

various similarity transformations including rotations, translations, re�ec-

tions, and uniform scaling.

This can be shown as follows. First we lety = g(x), w = g(v),
andJg be Jacobian of the transformation matrixg. Then we
have:

SD 0(� ) =

R

 � D 0(x) � (1 � G� 0 � � D 0(x)) dx

R

 � D 0(x) dx

=

R

 � D 0(x) � (1 �

R
R2 G� 0(x � v) � � D 0(v) dv) dx

R

 � D 0(x) dx

=

R

 � D (g(x)) � (1 �

R
R2 G� 0(x � v) � � D (g(v)) dv) dx

R

 � D (g(x)) dx

=

R

 � D (y) �

�
1 �

R
R2

G � 0(g� 1 (y ) � g� 1 (w )) � � D (w )
j det( Jg ) j2 dw

�
dy

R

 � D (y) 1

j det( Jg ) j dy

=

R

 � D (y) �

�
1 �

R
R2

j det( Jg ) j G � (y � w ) � � D (w )
j det( Jg ) j2 dw

�
dy

R

 � D (y) 1

j det( Jg ) j dy

=

R

 � D (y) � (1 � G� � � D (y)) dy

R

 � D (y) dy

= SD (� ): (8)

In addition to this analytical result, the invariance property of
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Fig. 5. [Shape signature] (a) Shape signatures of the shapes pre-

sented in Fig. 3 based on Gaussian kernels at varying feature scales

for different noise levels. (b) Shape signatures of the shapes presented

in Fig. 4 based on Gaussian kernels at varying feature scales for various

transformations.

the shape signature is graphically demonstrated in Fig. 5 (b)
which shows that the signatures obtained from the equivalent
shapes modulo similarity transformations including rotations,
translations, re�ections, and uniform scaling presented in
Fig. 4 are identical.

2.2.3 Characterization
The discriminative power of a shape descriptor is essential,
especially when it comes to sensitivity to local details. This
has to trade off robustness to undesirable perturbations. The
discriminative power of our shape descriptor stems from the
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shape feature that utilizes characteristic kernels with a series of
scales. The proposed shape feature becomes close to curvature
when the feature scale is in�nitesimal [60]. With varying size
of feature scales, our shape descriptor can be considered asa
regularized curvature forming a scale space that is insensitive
to noise due to its integral nature. In the computation of
the shape signature, the shape feature values are integrated
over the interior of the shape, which results in the average
of the shape features at a speci�c scale. The local geometric
features are characterized by the average of shape featuresat
varying scales. It may be noted here that our shape feature
is computed on an implicit representation which is favourable
against an explicit one in dealing with topological changes.
For example, it is natural to handle the chance of the number
of compact connected regions by merging or splitting using
an implicit representation such as a binary function, but itis
complicated to handle using an explicit representation such as
a parameterized curve.

3 SHAPE DISTANCE

Given two shapes, we compare their signatures at each scale
to quantify their dissimilarity. The shape distance is de�ned by
the optimal transport (Wasserstein) distance [62] betweenthe
shape signatures of two shapes across scales. In the compu-
tation of the shape signature, the feature scale is normalized
with respect to the area of the shape, which leads to scale
invariance. Our shape signature based on integral invariants
characterizes shape features at multiple scales forming a
measure parameterized by the normalized feature scale. It is
generally required to build correspondences between shapes
and to �nd optimal scales that characterize shapes when a
shape distance is measured. However, we propose a shape
discrepancy measure between a pair of shapes by a simple
integral measure of their shape signature difference over
feature scales without a need to �nd corresponding scales for
the shapes. We de�ne a shape distanced(D1; D2) between two
shapesD1 andD2 based on their shape signaturesSD 1 (� ) and
SD 2 (� ) using the Wasserstein distance as follows:

d(D1; D2) =
Z 1

0
jSD 1 (� ) � S D 2 (� )j d�: (9)

4 EXPERIMENTAL RESULTS

In this section, we apply our shape descriptor to the problem
of shape matching within the same shape category under var-
ious similarity transformations in combination with non-rigid
deformations. The shape distance de�ned based on our shape
signature is applied for shape matching using MPEG7 shape
dataset that includes 70 different shape categories with each
category consisting of 20 shapes of the same category modulo
various rigid and non-rigid deformations. The experimentsare
performed on 1400 shape images (70 categories� 20 shapes)
in order to demonstrate the robustness and effectiveness of
our shape descriptor. The examples of shape images in use
are presented in Fig. 6 with one example shown for each
category. In this experiment, our shape signature is computed
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(a) shape signature (b) confusion matrix

Fig. 7. Shape distance is computed based on the shape signature

using Wasserstein distance and pairwise distances among shapes are

presented in the form of matrix. (a) Shape signatures for the shapes

in Fig. 6 in the range of 768 feature scales. The feature value ranges

from 0 to 1 and the values are represented using a color coding scheme

where blue is for 0 and red is for 1. The x-axis represents the index

for the shape (from 1 to 70), and the y-axis represents the index for

the feature scale (from 1 to 768). (b) Confusion matrix that computes

a mutual distance between each pair of shapes in Fig. 6. The shape

distance is normalized from 0 to 1 and the values are illustrated in a

graphical way using a color coding scheme where blue is for 0 and red

is for 1.

for each shape in the range of scales with 12 octaves each
of which consists of 64 feature scales. Thus, our feature is
obtained at 768 scales (12 octaves� 64 scales) which form a
shape signature. The shape signatures obtained for the shapes
in Fig. 6 are presented in Fig. 7(a) where the vertical axis
represents the index for the shapes in Fig. 6 in row-wise order
from top to bottom and the horizontal axis represents the index
for the feature scale. The value of the shape signature ranges
from 0 to 1 as shown analytically in Section 2.2. The mutual
distance between each pair of the shapes in Fig. 6 is computed
based on the obtained shape signatures shown in Fig. 7(a)
and it is graphically illustrated in Fig. 7(b). The values
of the shape distance are normalized between 0 and 1 for
ease of interpretation with a smaller number indicating more
similarity, and a larger number indicating more differences. We
perform the shape categorization based on the shape distance.
Shapes with lower pairwise shape distances based on our shape
descriptor are assumed to be similar modulo the similarity
transformation, and thus they are considered to be in the same
category.

The shapes within each category in the MPEG7 shape
dataset have geometric variations as shown in Fig. 8 where
20 shapes with various sizes and poses comprise an example
(depicting a horse) of shape categories. In each category of
the shape dataset, shape variations in size and pose make
the shape matching problem more challenging. In order to
demonstrate the effectiveness and robustness of our shape
descriptor, shape categorization is performed on 10 different
sets of the shape dataset which include 14000 shape images
in total (10 sets� 70 categories� 20 shapes). A combination
of similarity transformations including translation, rotation,
re�ection, and uniform scaling with random parameters is
applied to each shape in the dataset building a different set
of shapes. An example set of randomly transformed shapes of
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Fig. 6. Examples of shapes in MPEG7 shape dataset that consists of 70 different shape categories. One shape example is presented for each

shape category that consists of 20 shapes deformed by a combination of various rigid and non-rigid transformations. Note that shapes in the dataset

are not necessarily compact regions. Some shapes have holes and are disconnected.

Fig. 8. 20 different shape images within one example of shape categories (horse) in the original shape dataset where a variety of deformations

exist in the same object category. Note that shapes within the same category may have different topological properties in that some shapes are

simply connected regions and others have holes or are multiply connected regions.

Fig. 9. An example set of shapes that are obtained by applying a similarity transformation to the shapes in Fig. 8. A combination of transformations

in the similarity transformation which includes translation, rotation, re�ection and uniform scaling with random par ameters is applied to each shape.

the original shapes in Fig. 8 by the similarity transformation
is presented in Fig. 9. The shape categorization experimentis
repeated on 10 different randomly transformed shape datasets
and the performance is evaluated by ROC (receiver operator
characteristics) analysis and the Bullseye measure that counts
the number of shapes in the same category (20 shapes) within
40 best matching shapes. For comparison of the performance,
statistical moment invariants [47], shape contexts [66], and
integral invariants using single scale [60] are employed. In the
computation of the shape similarity based on integral invari-
ants using single scale, the integral invariants are measured at
768 different scales ranged from �ne to coarse and the optical

scale is selected with respect to the performance measure.
Figure 10 presents the comparative analysis of the algorithm
performance for the shape categorization using our proposed
multiscale integral invariant signature, single scale integral
invariant, shape context, and statistical moment invariant.
The quantitative accuracy of each algorithm is measured by
the area under the ROC curve (a) and Bullseye measure
(b). The overall performance of the algorithms in the shape
categorization task under various similarity transformations is
presented by (a) the average and the standard deviation of
the area under the ROC curves that are computed over 10
different shape datasets obtained by random similarity trans-



IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXXX 2014 7

10 20 30 40 50 60 70

0.4

0.5

0.6

0.7

0.8

0.9

1

category (sorted by the area of ROC)

ar
ea

 o
f R

O
C

 

 

moments
shape context
single scale
ours

(a) Area under ROC curves

10 20 30 40 50 60 70
0

10
20
30
40
50
60
70
80
90

100

category (sorted by Bullseye value)

B
ul

ls
ey

e

 

 
moments
shape context
single scale
ours

(b) Bullseye score

Fig. 10. [Evaluation] The graphical illustration of the quantitative

evaluation for the shape categorization tasks using four different algo-

rithms that are moment invariants, shape contexts, integral invariants

using single scale, and our shape signature using multiscale integral

invariants based on (a) the area under the ROC curves and (b) Bullseye

measure. The algorithms are performed on the dataset that consists

of 10 (transformations) � 70 (categories) � 20 (shapes) = 14000

shapes. In each graph, the x-axis represents the index of the shape

category arranged by the performance, and the y-axis represents the

performance measure that is the area under the ROC curves for (a) and

Bullseye measure for (b). The color of the curves represents the method.

The overall performance of our shape signatures is shown to be better

than the other three methods.

formations to the original dataset and (b) Bullseye measure
that counts the number of shapes in the same category shapes
(20 shapes) within 40 best matching shapes. In this graphical
illustration of the quantitative evaluation, the horizontal axis
represents the index of the shape category and the vertical axis
represents the performance measure. The color of the curves
represents different method. In this analysis, the larger area
under ROC curve indicates the better performance and the
higher Bullseye measure indicates the better performance.For
ease of interpretation, the index of the shape category in the
x-axis is arranged in the increasing order of the performance
based on each evaluation method.
Similarly, the overall performance of each method on the
noisy shape datasets is evaluated by the area under ROC
curves and Bullseye measure with respect to different noise
levels as presented in Fig. 11 and Fig. 12, respectively, where
the average performance is presented over 10 different shape
datasets obtained by random similarity transformations using
different algorithms that are (a) moment invariants, (b) shape
contexts, (c) integral invariants based on single scale, and
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Fig. 11. [Evaluation - Area under the ROC curves under noise] The

graphical illustration of the quantitative evaluation for the shape catego-

rization tasks with different noise levels using four different algorithms

(a) moment invariants, (b) shape contexts, (c) integral invariants using

single scale, and (d) our shape signature using multiscale integral

invariants. The algorithm performance is evaluated using the average

of the area under the ROC curves and the shape categorization tasks

are performed on the dataset that consists of 5 (noises) � 10 (trans-

formations) � 70 (categories) � 20 (shapes) = 70000 shapes. In each

graph, the x-axis represents the index of the shape category arranged

by the area under the ROC curves values, and the y-axis represents

the area under the ROC curves. The color of the curves represents the

noise level. The overall performance of our shape signatures is shown

to be better than the other three methods being robust to noise while

maintaining higher precision.

(d) our multiscale integral invariants signatures. The shapes
corrupted by different levels of Gaussian additive noise toan
example shape in the dataset are shown in Fig. 13. Figure 11
and 12 show that our multiscale integral invariant signature
is signi�cantly more robust with respect to various similar-
ity transformations than the other methods using statistical
moment invariant, shape context and single scale integral
invariant while preserving geometrical shape characteristics.
In each graph, the horizontal axis represents the index of the
shape category and the vertical axis represents the performance
measure. The color of the curves represents different noise
level. The index of the shape category in the x-axis is arranged
in the increasing order of the performance based on each
evaluation method. In this shape categorization experiments,
shape categories that yield best and worst average performance
over 10 different randomly transformed shape datasets are
presented in Fig. 14 and Fig. 15, respectively where each block
of two rows represents shapes in one category. The shape
variations within the shapes in the categories that give the
best results appear to be relatively small as shown in Fig. 14.
The shape variations within the shapes in the categories that
give the worse results appear to be relatively large as shown
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Fig. 12. [Evaluation - Bullseye under Noise] The graphical illustration

of the quantitative evaluation for the shape categorization tasks with dif-

ferent noise levels using four different algorithms (a) moments invariants,

(b) shape contexts, (c) integral invariants using single scale, and (d) our

shape signature based on multiscale integral invariants. The algorithm

performance is evaluated using the Bullseye measure and the shape

categorization tasks are performed on the dataset that consists of 5

(noises) � 10 (transformations) � 70 (categories) � 20 (shapes) =

70000 shapes. In each graph, the x-axis represents the index of the

shape category arranged by the area under the ROC curves values,

and the y-axis represents the area under the ROC curves. The color of

the curves represents the noise level. The overall performance of our

shape signatures is shown to be better than the other three methods

being robust to noise while maintaining higher precision.

original � = 2 � = 4 � = 8 � = 16

Fig. 13. One example shape (left) and its noisy shapes with varying

degree of geometrical perturbation. The additive Gaussian noise is

applied to the original shape utilizing the level set representation which

is a signed distance function.

in Fig. 15. In particular, there are signi�cant scale changes
in the shapes of worst-performance categories which causes
loss of characteristic power even though our shape signature is
invariant to scale. Our shape descriptor based on multiscale in-
tegral invariants is designed to be robust with respect to noise,
which is demonstrated empirically with the shape datasets with
varying degree of noise. The shape categorization experiments
are repeated on the noisy shape datasets. The results obtained
by shape contexts are shown to be most sensitive to noise and
those obtained by moment invariants are least sensitive since
shape context is a descriptor that characterises local properties
of shape geometry based on relative positions and moment

Fig. 14. Example of the shape categories that yield best average

performance over 10 different shape datasets using our proposed shape

signature. Each block of two rows represents shapes in a category and

the shape categories are arranged from top to bottom in the order of the

performance.

Fig. 15. Example of the shape categories that yield worst average

performance over 10 different shape datasets using our proposed shape

signature. Each block of two rows represents shapes in a category and

the shape categories are arranged from top to bottom in the reverse

order of the performance.
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invariant is a global descriptor that is computed using integral
operations. On the other hand, moment invariant provides
invariance to translation, rotation and scaling, however shape
context is fragile to shape matching under rotation and scaling.
The experimental results show that our multiscale integral
invariants outperform shape contexts and moment invariants
indicating that our shape signature is robust to noise while
preserving desirable invariance to various transformations and
characteristic power to local shape geometry.

5 CONCLUSIONS AND DISCUSSION

We have introduced a shape feature that characterizes local
shape geometry based on integral kernels. A novel shape
descriptor is proposed by the integration of normalized shape
features with respect to the size of the shape at a range of
feature scales. The normalized shape features at a range of
scales form a signature and this shape signature has several
desirable properties: (1) it is invariant with respect to the group
transformation which includes translation, rotation, re�ection,
and uniform scaling. (2) It is insensitive to undesirable ge-
ometric perturbations due to the shape feature being based
on integral kernels. (3) It is characteristic with respect to
local shape geometry at multiple scales since the integration
of shape features is performed over a range of scales. The
potential of our shape descriptor has been demonstrated for
shape matching based on a variety of shapes taken from
a challenging shape dataset. The invariance of our shape
descriptor with respect to a group transformation can be
extended by considering a different characteristic kernel. For
example, an af�ne invariant shape descriptor can be developed
by modifying the characteristic kernel to be anisotropic asa
natural extension of this work.
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