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Shape Matching using
Multiscale Integral Invariants

Byung-Woo Hong, Stefano Soatto, Fellow, IEEE

Abstract —We present a shape descriptor based on integral kernels. Shape is represented in an implicit form and it is characterized
by a series of isotropic kernels that provide desirable invariance properties. The shape features are characterized at multiple scales
which form a signature that is a compact description of shape over a range of scales. The shape signature is designed to be invariant
with respect to group transformations which include translation, rotation, scaling, and re ection. In addition, the i ntegral kernels that
characterize local shape geometry enable the shape signature to be robust with respect to undesirable perturbations while retaining
discriminative power. Use of our shape signature is demonstrated for shape matching based on a number of synthetic and real
examples.

Index Terms —Shape matching, Shape descriptor, Integral invariant, Scale invariant, Wasserstein distance.
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1 INTRODUCTION ing [13], [14], quality control [15], [16], and object receg

HAPE analysis is a fundamental problem in compute'?itior? [17], [18]. A_variety of featu_res that are invariara t
Svision and image processing, and affects a variety SPECi € transformations has been investigated [19]-[#4r
application domains. It plays a key role in understanding &¥amPle. algebraic entities such as lines or polynomiatesir
identifying objects in images [1]~[5]. The intrinsic geoime have been used for constructing primitive invariants based
provides robust signatures for recognition under the wario®" @ global shape descriptor ['25], [26]. A shape descriptor,
nuisances of image formation, and subsequently the shap&@fed shape context, that consists of a radial histogratheof
objects has been widely used in their comparative analgsis€lative coordinates has been applied to shape matchirjg [13

shape can be represented in an explicit form by consecutlariants based on differential computations with resgec

line segments or higher order curves obtained from a set &tions of various Lie groups have been addressed [27]-{30]

points [6], [7]. This representation is ef cient due to itsw In pa_rticular, curvature ha§ 'been widely used as a shape
dimensionality, however it is dif cult to deal with topolagal descriptor based on an explicit shape representation dite to
changes that account for splitting or merging of shapesesinffvariant properties and computational convenience [[82].

such topological change requires re-parameterizationalan In order to avoid undesirable parameterization, a sigeatur

ternative approach is to represent shapes implicitly aspean consisting of curvature and its rst derivative has beemant

regions enclosed by planar contours [8], [9]. A region-uasguce‘j [33], [34]. A modi ed formulation in the computatiori o

shape representation makes it easy to deal with topologig?:\? rst derivative of curvature for numerical stability fiaeen

changes, and is robust to perturbations despite its higtRipSented [35]. Signatures based on differential invésiane
dimension. Shape is a property of geometric objeets), ( generally sensitive to noise which has led to the developmen
closed planar contours) that is invariant with respect to & Semi-differential invariants in order to avoid the cortgpu
certain transformation group, and is therefore represehge tion of high-order derivatives that may amplify noise [36]-
an equivalent class under the same group [10]. The geometdd): A major advantage in using differential invariants is
properties of shape are characterized by statistics or-de®0Viding locality which is a useful property for overcorgin
ministic functions of the data, leading to “features” thae a Occlusions [40], [41]. However, the fundamental drawbatk o

invariant to such transformations. This affords compamtzsfe differential invariants is that high-order derivativessbao be
and ef cient analysis of geometric objects. computed, and consequently the effect of noise is ampli ed.

The role of invariants under various group transformationxc@lé-space approaches via diffusion processes have been
in computer vision or pattern recognition has been studi§veloped to reduce such undesirable effects [42], [48]-[4

extensively in shape representation [11], [12], shape Imatdzor_ example, a _curvature scale-space con_structed based on a
series of Gaussian kernels has been applied to shape match-
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derived from classical moment invariants [47]. The errds achieved through the computation of local shape features
analysis and analytic characterization of moment desmgpt based on isotropic kernels, which is proven analyticallye T
have been studied in [49]. The Fourier transform has alsbaracteristic power of the shape descriptor forming assign
been applied to obtain integral invariants [50]-[52] with &ure that encodes shape features at a range of scales from ne
curve represented by a set of Fourier coefcients. In thi® coarse is demonstrated through a variety of synthetic and
method, high-order Fourier coef cients are known to be grorreal examples. The robustness and effectiveness of oueshap
to large variations in the presence of noise. Alternativegeh descriptor are tested in shape matching experiments.

been proposed using wavelets [53] and potentials [54]. One

major drawback of integral invariants is that they are glob® MuULTISCALE INTEGRAL INVARIANTS

descriptors, and are thus sensitive to the effects of oicrlas
Diffusion geometry approaches has been applied to shaige§ . ) ) . .
matching problems based on the Laplace-Beltrami opera nel which possesses desirable invariance properties. A

for establishing correspondences between shapes [55], [ gnge of kernel sizes are employed to characterize shape

The Gromov-Hausdorff distance has been used as a sim ?tures at multiple scales providing a shape descripta as

measure between shapes represented by point clouds [ ].Ctlon of featurt_e scale. We rst de ne a shape as a region
where is the domain of shape and we represent

In the attempt to deal with shape matching problems under . L : )
articulations, a shape decomposition into convex parts f apeD using the characteristic functiorp (x) for any spatial
' %cationx 2 as de ned by:

lowed by af ne normalization procedure has been propos

to construct an invariant representation to articulatidn o _ 1, x2D

3D objects projected onto 2D planar shapes [58]. Another b (X) = 0; x2 nD: (1)

approach to shape matching based on shape de<_:omp03|t|on.|1hel(;ss is an implicit shape representation which enables han-

been presented in [59] where a shape contour is decompoa ing topological changes naturally and can be integratéal i

into base and strand structures using a shape tree coestruaqe gllev:I se% framewogrlk that hasybeen widel g in sh

via a triangulation technique, and a matching algorithmeis p . . y used in shape
. matching, segmentation, etc. [63]—[65].

formed for corresponding base structures and strand stas;t

respectively.

An integral invariant based on the convolution with isotoop 2.1 Local Shape Feature

kernels has been developed to achieve insensitivity toenois

while preserving spatial locality, which enables robuste

with respect to occlusions [60] where the signature of the

proposed integral invariant is applied for shape matching.

this method, a shape is represented by a parameterized curve

in an explicit form which requires computationally expeesi

re-parameterizations in the presence of topological cbsng

The local descriptor based on integral invariants preserve

spatial locality and the matching between two shapes is c&#4. 1. [Integral Invariant] The graphical illustration for the computation

as nding correspondences between the contours. In o6the proposed shape feature based on the Gaussian kernel at four

study [61], integral invariants were developed by applting different sample locations on a synthetic shape example. The circular

convolution of isotropic kernels to the Heaviside functiofh shape represents a Gaussian kernel and the while region represents

a level set function which is an implicit representationisTh a shape. The value of the shape feature at each point in the shape

shape descriptor has been shown to be robust with respecietn is obtained by the integration of the multiplication between the

noise due to its integral nature and insensitive to topekgi Gaussian kernel and the characteristic function for the complementary

changes. The shape matching scheme based on this inte@@dn of the shape, and is represented by the area colored in green with

invariant has been integrated into the segmentation psoca%aussian weight. It may be noted that the shape feature value at point

as a shape prior. In these kernel-based integral invar@mts cis zero since there is no overlap between the characteristic kernel and

the implicit shape representation, local geometric pridg®r the complementary region of the shape and the shape feature value at

of shape are characterized simply at a speci ¢ scale usingdnt a is greater than the shape feature value at point b.

xed kernel size. However, it is often desired to analyzepsha

features at multiple scales since most geometrical featur=or a given regiorD that may be either simply or multiply

characteristics vary with scale. connected, we introduce a shape feathig characterizing

In this work, we present a novel shape descriptor that is ilpcal geometric properties dd at a given scale using a

variant to rotation, translation, scaling, and re ecticasbd on kernelG as follows:

integral kernels. The proposed integral invariants arepged _ )

based on implicit shape representation, and at multipleesca Fo()= o00) (1 G o (X)) )

The invariants computed at all scales are then concatenaidtereG is a normalized Gaussian kernel with the standard

as a single compact global descriptor, and the Wasserstéaviation > 0 in 2-dimension as de ned by:

distance [62] is used to measure the dissimilarity between 1

two shapes. The invariant property of our shape descriptor G (x)= 5 2

his section, we de ne a shape feature based on an isctropi

kx k2

e 272 ©))
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bk is represented by a characteristic function in (a) and igpsh
o features based on Gaussian kernels with from ner to coarser
i: scales are shown in (b)—(d). The value for the shape feature
t* is represented by a color for the visualization purposeguain

(@) shape (b) =0:1 (c) =0:2 =04 (e) =0:8 color coding scheme that ranges from blue for 0 to red for 1 as
the shape feature value ranges from 0 to 1. The computation
of our shape feature is restricted within the interior of the
shape boundary which is precisely preserved by a non-linear
operation across scales in contrast to a Gaussian scale-spa
that diffuses shape and deforms its boundary. One of the
advantages of our shape feature is that it is a local descript
and thus robust to occlusions. In addition, its computation
is based on convolution as opposed to differentiation that
is sensitive to noise, and this integral operation natyrall
The feature valud= at each point within a shape 2 D  discounts noise in a manner controlled by the kernel size. Th
is computed by the integration of the multiplication betweechoice of Gaussian kernel is for mathematical convenience
the Gaussian kerneb and the characteristic function foras well as for its invariance properties. It is noted that any
the complementary region of the shapé = nD over the kernel other than Gaussian can be applied for de ning the
shape regiorD. This can be interpreted as the area of thehape feature, but its characterization and invarianceepties
complementary region of the shape weighted by the Gaussiaay differ depending on the kernel characteristics.

kernel. The proposed shape feature is designed to develop

a descriptor that characterizes local geometric propefty o

shape leading to robustness to occlusion, achieves imaaria2-2 Shape Signature

to various transformations, and bases on the integral 6pera Shapes of interest often comprise constituent geometris pa
in its computation leading to insensitivity to insigni can of various scales, which is a motivation of our multiscale
geometric perturbations. A shape region is represented &yproach to shape analysis. For a given shape, we propose
the characteristic function that de nes the shape in a inag scheme based on integral kernels. The shape feature is
form, which is then convolved with Gaussian kernel in th@omputed constructing a scale-space. From the obtainga sha
characterization of local geometric property of shape. Theatures we apply an integral invariant function with regpe
convolution of a binary function with a Gaussian kerneb group transformations that include translation, rotati

is related to local geometric properties of the shape. TRegaling and re ection. A novel shape descriptor is devetbpe
convolution is an integral operation that is effective tokena by applying an integral invariant to the shape features at a
our shape feature insensitive to noise and the use of @mge of scales forming a signature function of scale. The

isotropic kernel such as Gaussian kernel enables the shgpsposed shape signatuBs ( ) of shapeD at scale is
feature to be invariant to isometries that include rigid imeg  de ned by:

Fig. 2. [Shape feature] Examples of the proposed shape features for a
synthetic shape at multiple feature scales based on Gaussian kernels.
(a) Original shape. (b)—(e) Shape features based on Gaussian kernels
with from ner to coarser feature scales and the feature valu es are
represented using a color coding scheme that ranges from blue for 0
to red for 1 as the shape feature value ranges from O to 1.

and re ections. Fig. 1 shows the graphical illustration for R

the computation of the proposed shape feature based on the So() = 50 (x) dx

Gaussian kernel that is represented by the circular shape at R D dx

four different sample locations on a synthetic shape exampl p() (1 G b (X)) dx

that is represented by the white region. The value of theeshap = 5 (x) dx ; (4)

feature at each point in the shape region is obtained by the

weighted area of the intersection between the kernel and thkere is given as:

complgmentary region of the shape py the Ggussian kernel, S

which is shown are the area colored in green in the gure. It )

may be noted that the shape feature value at poisstzero - p (X) dx: ®)
since there is no overlap between the characteristic kamgb!
the complementary region of the shape. It is shown that thiée shape signature is obtained by the integration of the
shape feature value at poiatis greater than the shape featuréeature values over the shape domain where the feature value
value at pointb. The feature thus de ned entails a notioris normalized by the area of the shape in order to achieve
of regularized curvature and its associated scale-spaje [4cale invariance. In the analysis of shape, the signature is
In the curvature scale-space, the shape boundary is dedorrabtained at a range of scales in order to capture shape char-
across scales due to the convolution with Gaussian kerhelsgteristics at varying scales. The range of the shape signat
varying scales, yielding undesirable geometric distartisthe is0 S p( ) 1 for any shapeD as follows:

kernel size increases. In contrast, our proposed shaperdéeat o) (1 G 5 (X)) dx

characterizes shape at varying feature scales while pieger  |im Sy () = Ilim R
the geometric properties of the shape boundary. A graphical ' © é 0 p (X) dXx
illustration of our shape features at different scales for a _ D(é) (1 p (X)) dx _

synthetic shape is presented in Fig. 2 where the origingesha B b (x) dx - (6)
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R
. ) p(X) (1 G b (X)) dx
l!l:[n SD( ) II!I;P p D(X)dx EE““.
_ p(x) ldx
B p(x)dx g ")

@Dy (b)D2  (9Ds  (d)Ds  (e)Ds

Fig. 4. [Equivalent shape] Examples of equivalent shapes modulo

Ii‘m G D (X) = |i|mO G (X y) D (y)dy various similarity transformations including rotations, translations, re ec-
. R2 H

These relations hold dge to:

tions, and uniform scaling.

= (x y) o(dy= (x) o(X)= o(x)

R2
Z This can be shown as follows. First we yet g(x), w = g(v),
lim G o (x) = lim 1 e Liidy and Jg be Jacobian of the transformation matgxThen we
1 1 2 2 have:
. 1 ix_yi2 . 1 z R 1 G d
=lm 5= e Sy lim o D1dy:0: Spe( ) = po(X) o o po(x)) dx
o _ o R po(x) dx
For a graphical |IIu_stra_t|on, we present the c_haractes_suf _ po(x) (1 ,Go(x V) po(v)dv)dx
the shape feature in Fig. 2 and the shape signature in Fig. 5 = =2
using a simple yet illustrative example. In Fig. 2, for a give R R po(x) dx
shape in (a) the shape features at different scales arenpgdse ~ _ p(9(x)) (I g Go(x V) p(g(v))dv)dx
in (b)—(e) which show the effect of scale. The shape sigeatur p (g(x)) dx
that encodes shape features at a range of scales is presented R R 6o *y) g *w) ow)
in Fig. 5 where thec-axis represents the feature scale in alog _ o(y) 1 RRZ j det(Jg)j? dw dy
scale and the-axis represents the feature signature. D (y)m dy

. jdet(Jg)j G ( ) o (w)
2.2.1 Robustness to Noise o(y) 1 _ re TaeIg)edw dy

D (Y)m dy

R
oWl G o(y)dy
R =S : 8
In addition to this analytical result, the invariance pnapef

(a) original (b) std=1 (c) std=2 (d) std=4 (e) std=8

Fig. 3. [Noisy shape] Examples of a shape and its noisy shapes at
different noise levels. (a) Original shape. (b)—(e) Noisy shapes at varying 08
levels of additive Gaussian noise with the given standard deviation.

gO.G ° 0.6 —D
§ 05 —— original é gi —P
Our shape descriptor is robust to noise due to the integré? 0 e %03 g
computation that diffuses zero-mean noise up to the given fe 2 — o o,
_ture_scale. In addition, suc_h rok_)ustness is iIIustratetp_pidly _ 0 5 s ° T s 18
in Fig. 3 where shapes with different levels of additive rois scale (5) scale (5)
are shown in (b)—(e) with the noise standard deviation = 1, (@) (b)

2, 4, 8, respectively and in Fig. 5 (a) where the signatures Iﬁifg. 5. [Shape signature] (a) Shape signatures of the shapes pre-
the shapes shown in Fig. 3 are presented. The discrepancyfeq in Fig. 3 based on Gaussian kernels at varying feature scales
the signatures of the noisy shapes from the signature of tIl('Jtedifferent noise levels. (b) Shape signatures of the shapes presented
original shape re ects the level of noise present. The naise in Fig. 4 based on Gaussian kernels at varying feature scales for various
the shape affects the formation of the signature curve at the stormations.
range of feature scales that are related to the level of noise

the shape signature is graphically demonstrated in Fig.)5 (b
2.2.2 Invariance which shows that the signatures obtained from the equivalen
Invariance to nuisance transformations is desirable irpshashapes modulo similarity transformations including riotas,
matching, indexing, and ultimately recognition, since fit- e translations, re ections, and uniform scaling presented i
ables bypassing the initial alignment as a preprocessi stFig. 4 are identical.
Thus, our shape signatui®, ( ) is designed to be invari-
ant with respect to the group transformation which includes2.3 Characterization
translation, rotation, scaling and re ection. This imglithat The discriminative power of a shape descriptor is essential
if po= p g; gXx)= sRx+t;, wheres6 0 is a scalarf is especially when it comes to sensitivity to local detailsisTh
a translation vector, an@ is an orthogonal matrix that repre-has to trade off robustness to undesirable perturbations. T
sents rotations or re ections, theBpo( )= Sp( ); 8 0. discriminative power of our shape descriptor stems from the



IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXXX 2014 5

shape feature that utilizes characteristic kernels witbreges of

scales. The proposed shape feature becomes close to carvat ot
when the feature scale is in nitesimal [60]. With varyingsi 2 07
of feature scales, our shape descriptor can be considerad a:£ * o
regularized curvature forming a scale space that is insemsi 04
to noise due to its integral nature. In the computation of

dex

3
4

3
4

shape index

0

shape

0.3
0.2

the shape signature, the shape feature values are inggral = P ot
over the interior of the shape, which results in the average 100200 300490 o0 600700 1020 e T
of the shape features at a speci c scale. The local geometric  (3) shape signature (b) confusion matrix

features are characterized by the average of shape features, _ _ _
varying scales. It may be noted here that our shape featl'J:tlg' 7. shape _d'Stjance Is Compl{te?l baS_ed on the shape signature
is computed on an implicit representation which is favoleabVSn9 Wassgrstem distance ajd pairwise dlsta.mces among shapes are
against an explicit one in dealing with topological Changegres'enteq in the form of matrix. (a) Shape signatures for the shapes
For example, it is natural to handle the chance of the numB&F'g' 6 in the range of 768 feature scales. -The feature v§lue ranges
of compact connected regions by merging or splitting usiﬁ mOtola.nd the values are.represented u5|ngacolor coding scheme
an impIicit representation such as a binary function, bus it where blue is for 0 and red is for 1. The x-axis represents the index

complicated to handle using an explicit representatiom sisc for the shape (from 1 to 70), and the y-aX|s.represe.nts the index for
a parameterized curve. the feature scale (from 1 to 768). (b) Confusion matrix that computes

a mutual distance between each pair of shapes in Fig. 6. The shape
distance is normalized from 0 to 1 and the values are illustrated in a
3 SHAPE DISTANCE graphical way using a color coding scheme where blue is for 0 and red
Given two shapes, we compare their signatures at each sdéafe 1.
to quantify their dissimilarity. The shape distance is dedrby
the optimal transport (Wasserstein) distance [62] betvthen

shape signatures of two shapes across scales. In the COmMpteach shape in the range of scales with 12 octaves each
tation of the shape signature, the feature scale is norewliz \hich consists of 64 feature scales. Thus, our feature is
with respect to the area of the shape, which leads to SCgigained at 768 scales (12 octaves4 scales) which form a
invariance. Our shape signature based on integral invariaghape signature. The shape signatures obtained for thesshap
characterizes shapg features at mult'lple scales formmgng,:ig_ 6 are presented in Fig. 7(a) where the vertical axis
measure parameterized by the normalized feature scale. Iidpresents the index for the shapes in Fig. 6 in row-wiserorde
generally required to build correspondences between shag8 top to bottom and the horizontal axis represents thexnd
and to nd optimal scales that characterize shapes Whentq the feature scale. The value of the shape signature sange
shape distance is measured. However, we propose a Shape o to 1 as shown analytically in Section 2.2. The mutual
discrepancy measure between a pair of shapes by a simjlgance between each pair of the shapes in Fig. 6 is computed
integral measure of their shape signature difference oglseq on the obtained shape signatures shown in Fig. 7(a)
feature scales without a need t(_) nd corresponding scales fg,4 it is graphically illustrated in Fig. 7(b). The values
the shapes. We de ne a shape distad(i,; D) between two ot the shape distance are normalized between 0 and 1 for
shaped; andD, based on their shape signatuBes ( ) and  gase of interpretation with a smaller number indicating enor

Sp,( ) using the Wgsserstein distance as follows: similarity, and a larger number indicating more differemca/e
_ oo L perform the shape categorization based on the shape distanc
d(D1;D2) = . iSo.( ) S p,()jd: (9)  Shapes with lower pairwise shape distances based on ow shap

descriptor are assumed to be similar modulo the similarity
transformation, and thus they are considered to be in the sam
category.

4 EXPERIMENTAL RESULTS The shapes within each category in the MPEG7 shape
In this section, we apply our shape descriptor to the problemataset have geometric variations as shown in Fig. 8 where
of shape matching within the same shape category under \208-shapes with various sizes and poses comprise an example
ious similarity transformations in combination with nagid (depicting a horse) of shape categories. In each category of
deformations. The shape distance de ned based on our sh#ipe shape dataset, shape variations in size and pose make
signature is applied for shape matching using MPEG7 shatpe shape matching problem more challenging. In order to
dataset that includes 70 different shape categories with ealemonstrate the effectiveness and robustness of our shape
category consisting of 20 shapes of the same category moddéscriptor, shape categorization is performed on 10 differ
various rigid and non-rigid deformations. The experiments sets of the shape dataset which include 14000 shape images
performed on 1400 shape images (70 categorieXd shapes) in total (10 sets 70 categories 20 shapes). A combination

in order to demonstrate the robustness and effectivenessobfsimilarity transformations including translation, atibn,

our shape descriptor. The examples of shape images in vsection, and uniform scaling with random parameters is
are presented in Fig. 6 with one example shown for eaalpplied to each shape in the dataset building a different set
category. In this experiment, our shape signature is coegpubf shapes. An example set of randomly transformed shapes of
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Fig. 6. Examples of shapes in MPEG7 shape dataset that consists of 70 different shape categories. One shape example is presented for each
shape category that consists of 20 shapes deformed by a combination of various rigid and non-rigid transformations. Note that shapes in the dataset
are not necessarily compact regions. Some shapes have holes and are disconnected.

Y > > A A - A

WA » <~ PN

Fig. 8. 20 different shape images within one example of shape categories (horse) in the original shape dataset where a variety of deformations
exist in the same object category. Note that shapes within the same category may have different topological properties in that some shapes are
simply connected regions and others have holes or are multiply connected regions.

CSEIENEIRFIFAE RN

NS ENNRGNER

Fig. 9. An example set of shapes that are obtained by applying a similarity transformation to the shapes in Fig. 8. A combination of transformations
in the similarity transformation which includes translation, rotation, re ection and uniform scaling with random par ameters is applied to each shape.

the original shapes in Fig. 8 by the similarity transforroati scale is selected with respect to the performance measure.
is presented in Fig. 9. The shape categorization experimenfigure 10 presents the comparative analysis of the algorith
repeated on 10 different randomly transformed shape dataggerformance for the shape categorization using our prapose
and the performance is evaluated by ROC (receiver operatoultiscale integral invariant signature, single scalesgnal
characteristics) analysis and the Bullseye measure thattgo invariant, shape context, and statistical moment invarian
the number of shapes in the same category (20 shapes) withive quantitative accuracy of each algorithm is measured by
40 best matching shapes. For comparison of the performanites area under the ROC curve (a) and Bullseye measure
statistical moment invariants [47], shape contexts [66]] a (b). The overall performance of the algorithms in the shape
integral invariants using single scale [60] are employadhk categorization task under various similarity transfoiora is
computation of the shape similarity based on integral invapresented by (a) the average and the standard deviation of
ants using single scale, the integral invariants are medsair the area under the ROC curves that are computed over 10
768 different scales ranged from ne to coarse and the optidadifferent shape datasets obtained by random similaritystra
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28 (c) single scale invariant (d) our shape signature
10 R Fig. 11. [Evaluation - Area under the ROC curves under noise] The

graphical illustration of the quantitative evaluation for the shape catego-
rization tasks with different noise levels using four different algorithms
(a) moment invariants, (b) shape contexts, (c) integral invariants using
single scale, and (d) our shape signature using multiscale integral
invariants. The algorithm performance is evaluated using the average
of the area under the ROC curves and the shape categorization tasks
are performed on the dataset that consists of 5 (noises) 10 (trans-
formations) 70 (categories) 20 (shapes) = 70000 shapes. In each
graph, the x-axis represents the index of the shape category arranged
by the area under the ROC curves values, and the y-axis represents
the area under the ROC curves. The color of the curves represents the
noise level. The overall performance of our shape signatures is shown
to be better than the other three methods being robust to noise while
maintaining higher precision.

10
category (sorted by Bullseye value)

(b) Bullseye score

20 30 40 50 60 70

Fig. 10. [Evaluation] The graphical illustration of the quantitative
evaluation for the shape categorization tasks using four different algo-
rithms that are moment invariants, shape contexts, integral invariants
using single scale, and our shape signature using multiscale integral
invariants based on (a) the area under the ROC curves and (b) Bullseye
measure. The algorithms are performed on the dataset that consists
of 10 (transformations) 70 (categories) 20 (shapes) = 14000
shapes. In each graph, the x-axis represents the index of the shape
category arranged by the performance, and the y-axis represents the
performance measure that is the area under the ROC curves for (a) and
Bullseye measure for (b). The color of the curves represents the method.
The overall performance of our shape signatures is shown to be better
than the other three methods.

(d) our multiscale integral invariants signatures. Thepsisa

corrupted by different levels of Gaussian additive noisarto
formations to the original dataset and (b) Bullseye measusgample shape in the dataset are shown in Fig. 13. Figure 11
that counts the number of shapes in the same category shages 12 show that our multiscale integral invariant sigreatur
(20 shapes) within 40 best matching shapes. In this graphiga signi cantly more robust with respect to various similar
illustration of the quantitative evaluation, the horizainaxis ity transformations than the other methods using stadiktic
represents the index of the shape category and the vertical anoment invariant, shape context and single scale integral
represents the performance measure. The color of the curiregriant while preserving geometrical shape charadtesis
represents different method. In this analysis, the largea aln each graph, the horizontal axis represents the indexef th
under ROC curve indicates the better performance and tsteape category and the vertical axis represents the pexfmen
higher Bullseye measure indicates the better performdrme. measure. The color of the curves represents different noise
ease of interpretation, the index of the shape categoryen tlevel. The index of the shape category in the x-axis is agédng
x-axis is arranged in the increasing order of the perforraanm the increasing order of the performance based on each
based on each evaluation method. evaluation method. In this shape categorization experisnen
Similarly, the overall performance of each method on th&hape categories that yield best and worst average penficema
noisy shape datasets is evaluated by the area under R@@r 10 different randomly transformed shape datasets are
curves and Bullseye measure with respect to different noigeesented in Fig. 14 and Fig. 15, respectively where eaatkblo
levels as presented in Fig. 11 and Fig. 12, respectivelyravh®f two rows represents shapes in one category. The shape
the average performance is presented over 10 differenteshapriations within the shapes in the categories that give the
datasets obtained by random similarity transformatiorisgus best results appear to be relatively small as shown in Fig. 14
different algorithms that are (a) moment invariants, (g The shape variations within the shapes in the categorids tha
contexts, (c) integral invariants based on single scal€, agive the worse results appear to be relatively large as shown
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(c) single scale invariant (d) our shape signature

Fig. 12. [Evaluation - Bullseye under Noise] The graphical illustration
of the quantitative evaluation for the shape categorization tasks with dif-
ferent noise levels using four different algorithms (a) moments invariants,
(b) shape contexts, (c) integral invariants using single scale, and (d) our
shape signature based on multiscale integral invariants. The algorithm
performance is evaluated using the Bullseye measure and the shape
categorization tasks are performed on the dataset that consists of 5
(noises) 10 (transformations) 70 (categories) 20 (shapes) =
70000 shapes. In each graph, the x-axis represents the index of the
shape category arranged by the area under the ROC curves values,
and the y-axis represents the area under the ROC curves. The color of
the curves represents the noise level. The overall performance of our
shape signatures is shown to be better than the other three methods
being robust to noise while maintaining higher precision.

original =2 =4 =8 =16

Fig. 13. One example shape (left) and its noisy shapes with varying
degree of geometrical perturbation. The additive Gaussian noise is
applied to the original shape utilizing the level set representation which
is a signed distance function.

Fig. 14. Example of the shape categories that yield best average
performance over 10 different shape datasets using our proposed shape
signature. Each block of two rows represents shapes in a category and
the shape categories are arranged from top to bottom in the order of the
performance.

in Fig. 15. In particular, there are signi cant scale change
in the shapes of worst-performance categories which cau
loss of characteristic power even though our shape sigaaur
invariant to scale. Our shape descriptor based on mulésnal
tegral invariants is designed to be robust with respect tseno

which is demonstrated empirically with the shape datasits wFig. 15. Example of the shape categories that yield worst average
varying degree of noise. The shape categorization expaténeperformance over 10 different shape datasets using our proposed shape
are repeated on the noisy shape datasets. The resultsembtadmynature. Each block of two rows represents shapes in a category and
by shape contexts are shown to be most sensitive to noise &ftshape categories are arranged from top to bottom in the reverse

those obtained by moment invariants are least sensitive® Sifrder of the performance.

shape context is a descriptor that characterises locakpiep

of shape geometry based on relative positions and moment
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invariant is a global descriptor that is computed usinggrdé [8]
operations. On the other hand, moment invariant provides
invariance to translation, rotation and scaling, howeverpse 9]
context is fragile to shape matching under rotation andrsgal
The experimental results show that our multiscale integral
invariants outperform shape contexts and moment invaria
indicating that our shape signature is robust to noise while
preserving desirable invariance to various transformatiand [11]
characteristic power to local shape geometry.

[12]
5 CONCLUSIONS AND DiscussiON 13]
We have introduced a shape feature that characterizes local
shape geometry based on integral kernels. A novel shapg

descriptor is proposed by the integration of normalizedpsha
features with respect to the size of the shape at a range[léf

feature scales. The normalized shape features at a range of

E. Saber and A. Tekalp, “Region-based shape matching dtonaatic
image annotation and query-by-examplégurnal of Visual Communi-
cation and Image Representatjovol. 8, no. 1, pp. 3-20, 1997.

M. Bober, “Mpeg-7 visual shape descriptordEEE Transactions on
Circuits and Systems for Video Technolpggl. 11, no. 6, pp. 716-719,
2001.

0] D. G. Kendall, “Shape manifolds, procrustean metricsg aomplex

projective spacesPBulletin London Mathematical Societyol. 16, no. 2,
pp. 81-121, 1984.

A. Bengtsson and J.-O. Eklundh, “Shape representdiiomultiscale
contour approximation,JEEE Transactions on Pattern Recognition and
Machine Intelligencevol. 13, no. 1, pp. 85-93, 1991.

D. Mumford, A. Latto, and J. Shah, “The representatiosidpe,|EEE
Workshop on Comp. Vispp. 183-191, 1984.

S. Belongie, J. Malik, and J. Puzicha, “Shape matchirdyaject recog-
nition using shape contextdEEE Transactions on Pattern Recognition
and Machine Intelligencevol. 24, no. 4, pp. 509-522, 2002.

S. Z. Li, “Shape matching based on invariants,”Hrogress in Neural
Networks : Shape Recognitioh999, vol. 6, pp. 203-228.

D. Chetverikov and Y. Khenokh, “Matching for shape defdetection,”
Proc. International Conference on Computer Analysis of desmand
Patterns pp. 367-374, 1999.

scales form a signature and this shape signature has seviegalJ. Verestoy and D. Chetverikov, “Shape detect detadtiderrite cores,”

desirable properties: (1) it is invariant with respect te ¢noup
transformation which includes translation, rotation,eetion,
and uniform scaling. (2) It is insensitive to undesirable ge
ometric perturbations due to the shape feature being baskd
on integral kernels. (3) It is characteristic with respeat t9
local shape geometry at multiple scales since the integratij20]
of shape features is performed over a range of scales. The
potential of our shape descriptor has been demonstrated
shape matching based on a variety of shapes taken frem
a challenging shape dataset. The invariance of our shape
descriptor with respect to a group transformation can ﬂa‘%
extended by considering a different characteristic kerRet |24
example, an af ne invariant shape descriptor can be deeglop
by modifying the characteristic kernel to be anisotropicaas[25]
natural extension of this work.
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