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ABSTRACT 

Automated image segmentation has been playing a critical role in medical image analysis. Recentl, Level Set 
methods have shown an efficacy and efficiency in various imaging modalities. In this paper, we present a novel 
segmentation approach to jointly delineate the boundaries of epi- and endocardium of the left ventricle on the 
Magnetic Resonance Imaging (MRI) images in a variational framework using level sets, which is in great demand 
as a clinical application in cardiology. One strategy to tackle segmentation under undesirable conditions such as 
subtle boundaries and occlusions is to exploit prior knowledge which is specific to the object to segment, in this 
case the knowledge about heart anatomy. While most left ventricle segmentation approaches incorporate a shape 
prior obtained by a training process from an ensemble of examples, we exploit a novel shape constraint using an 
implicit shape prior knowledge, which assumes shape similarity between epi- and endocardium allowing a 
variation under the Gaussian distribution. Our approach does not demand a training procedure which is usually 
subject to the training examples and is also laborious and time-consuming in generating the shape prior. Instead, 
we model a shape constraint by a statistical distance between the shape of epi- and endocardium employing signed 
distance functions. We applied this technique to cardiac MRI data with quantitative evaluations performed on 10 
subjects. The experimental results show the robustness and effectiveness of our shape constraint within a 
Mumford-Shah segmentation model in the segmentation of left ventricle from cardiac MRI images in comparison 
with the manual segmentation results. 
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1. INTRODUCTION 

 
Cardiac MRI is widely recognized as the gold standard for volumetric analysis of the left ventricle (LV). Accurate 
segmentation of LV, particularly delineating the epi- and endocardium, is a fundamental and crucial prerequisite 
for the derivation of quantitative heart parameters such as wall thickening [1], end-diastolic volume (EDV), end-
systolic volume (ESV), ejection fraction (EF), and myocardial mass [2].  
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In general, segmentation in medical images remains to be a challenging problem since not only should the unique 
imaging properties be captured but there also exist intrinsic problems associated with image quality such as low 
contrast, occlusions, image noise, and other complex phenomena which would make robust and accurate 
segmentation difficult. Several general image segmentation approaches have been proposed so far. One of the 
widely used segmentation methods is the edge-based segmentation method, which includes the use of edge 
operators and active contours called snakes [3, 4]. The snake technique evolves a curve defined in the image 
domain under the influence of internal and external forces. In classical active contour models, an edge detector is 
used to derive the external force. They detect objects with edges defined by gradients.  This approach has several 
limitations. 
 

First, the underlying image may suffer from low contrast and noise and the segmentation accuracy can be affected 
accordingly.  Second, it is difficult to deal with topological change where curve parameterization is required.  On 
the other hand, the region-based approach adopts a more global partitioning method that integrates intensity over 
the whole image domain [5, 6]. The region-based level set method represents curves implicitly as the zero level set 
of a scalar function. It can deal with topological change easily. Also, the region-based approach is more robust than 
the edge-based approach when the contrast between the object and the background is low.  

 

Recently, the model-based approach [4, 7, 8] has gained a lot of attention as a solution to image segmentation 
problems with incomplete image information. It incorporates prior knowledge to improve the segmentation 
robustness and accuracy caused by poor image contrast, noise and missing boundaries. The prior shape model can 
be obtained using either explicit or implicit contour representations. The parametric point distribution model [9] 
with landmarks is an example of the explicit representation. However, the explicit boundary representation has 
several drawbacks such as fixed topology or pairwise correspondence. 

 

To overcome these drawbacks, the level set method is employed for implicit representation. Segmentation with 
prior information was adopted in the level set method before [4, 7, 8].  The implicit contour representation has 
several advantages over the explicit one in that it does not depend on a specific parameterization or a shape 
dissimilarity measure. Thus, it can handle topological change more easily.   

 

In either explicit or implicit contour representation, principal component analysis (PCA) has been widely used to 
get the shape prior. For example, Leventon et al. [10] proposed a shape prior model to restrict the flow of the 
geodesic active contour, where the prior was derived by performing PCA on a collection of signed distance 
function of the training shape.  Most previous work [4, 11] tackled ill-posedness due to noise or subtle boundary by 
incorporating the explicit statistical shape prior. Given a set of training shapes, the prior information can be 
incorporated in the segmentation process.  Although the shape-based method has led to successful segmentation 
results in [4, 11], they demand a manual segmented training data set, which is labor intensive. 

 
It is worthwhile to point out that in cardiac MRI the detection of epicardium is more challenging than that of 
endocardium since the background contrast is lower than the blood pool contrast, resulting in a partially occluded 
epicardium boundary. Besides, it has a heterogeneous characteristics due to various structures immediately 
adjacent to the heart. 
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To address these limitations, we propose a segmentation algorithm by introducing a novel shape constraint and 
apply it to cardiac MRI segmentation of LV; namely, the implicit shape prior, without a training procedure based 
on the assumption that the endocardium and epicardium shapes are anatomically similar. Specifically, we 
formulate this problem as a region-based coupling level set segmentation [5, 12]. Cardiac MRI data are used in our 
experiment and quantitative tests of 10 subjects in end-diastolic (ED) and end-systolic (ES) phase demonstrate the 
accuracy and robustness of the proposed approach. 

 
2. METHODS 

 
2.1. Multi-phase Region-based Segmentation Scheme 
 
 
We need to extract two structures, endocardium and epicardium, that are assumed to have similar shapes 
simultaneously in a single image. Note that one shape is located inside of the other. We propose a multi-phase 
segmentation scheme where the boundary of most probable structures of interest is jointly estimated. We model the 
boundaries of the epi- and endocardium as the zero level sets of two signed distance functions, 1( )xφ and 2 ( )xφ , 

where 1{ ( ) 0}x xφ =  represents the endocardium boundary and 2{ ( ) 0}x xφ =  represents the epicardium boundary, 
respectively. The observed image I  can be divided into three disjoint regions as: 
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Then we have an image model 1 1 2 2 1 2 1 2(1 ) (1 ) (1 )bI c c cχ χ χ χ χ χ= ∧ + − ∧ + − ∧ −  where 1χ and 2χ are characteristic 

functions that specify the regions 1Ω and 2Ω respectively. Assuming this piecewise constant image model, the 
energy, called data fidelity term, that measures a discrepancy of intensities between given image and its ideal 
image model is defined by: 
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In the optimization, keeping 1φ  and 2φ  fixed, the average constant intensity, 1 2,c c  and bc , can be updated as 
follows: 
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In addition to this model fitting, it is also preferable to obtain smooth segmentation results which leads to have the 
following regularization term: 
 
 

1 21 2 ( ( )) ( ( ))( , )regE H x dx H x dxφ φφ φ
Ω Ω

= ∇ + ∇∫ ∫  

 
 
In order to attract the segmenting curve toward the location of high contrast, we also introduce the following 
external energy using the edge indicator function: 
 
 

2 2( ) ( )extE gH dxφ φ
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= −∫ , 

 

where 2
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1 *
g
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 and Gσ is the Gaussian kernel with standard deviationσ . 

 
When the function g is constant 1, the external energy functional is the area of the region { }

2 2 ( ) 0x xφ φ−Ω = < .  

Thus the external energy can be considered as the weighted area of 
2φ
−Ω  

 
The segmentation model using the above three energy terms may fail to extract the structures of interest in the 
presence of missing or subtle boundaries. It is desired to incorporate prior knowledge on the objects of interest to 
deal with such difficulties and consequently we propose the following shape prior model that does not require 
explicit training data. 
 
2.2. Shape constraint 
 
 
The data fidelity term may be insufficient to extract the structures of interest in the presence of missing or subtle 
boundaries. Thus shape prior knowledge needs to be incorporated to deal with those obstacles and avoid local 
minima. Instead, we propose to use a shape constraint prior, implicit shape prior knowledge, between structures of 
interest without a need of training data. 
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The novel shape prior knowledge assumes that the shape of one object is similar to the shape of the other allowing 
variation in a statistical framework. We first define a shape distance between two regions of interest by 1( )xφ -

2 ( )xφ  within the intersection of 1Ω and 2Ω . Then, the shape distance ( )D x  following the Gaussian distribution is 
given as: 
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where the shape variation is subject to the choice of σ  whose value is proportional to the allowable deformation 
between two shapes. Then, the shape constraint is defined as follows: 
 

 

1 2( , ) log ( , ),shapeE p Dφ φ μ σ=  
 
 
where μ is optimized from the closed form formula andσ can be chosen as constant empirically based on the 
deformation properties of the regions of interest to segment. 
 
2.3. Energy minimization 
 
 
The optimal solution to our problem should minimize the following energy: 

 

1 2 1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ) , )(total data reg shape extE E E E Eφ φ φ φ α φ φ β φ φ λ φ φ= + + + , 
 
where α  controls the smoothness of segmenting shapes, β  weights the significance of the shape prior knowledge 
that specifies an allowable variation in distance between two shapes, and λ  is a coefficient of the external energy 
which helps speed up the curve evolution. 
 
A gradient descent approach is used as a minimization scheme and alternative minimization with respect to 1φ  and 

2φ  is performed. We omit the detailed derivation of the associated Euler-Lagrange equations due to the space 
constraints. 
 
For numerical implementation, we use the following approximations for the Heaviside function and the Dirac delta 
measure as defined in [5].  
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3. RESULTS 
 
 
The proposed algorithm is implemented and tested on cardiac MRI at ED and ES phases of 10 subjects, followed 
by quantitative comparison to expert manual segmentation previously obtained. The images were acquired on a 
clinical 1.5T MRI scanner (Siemens Sonata, Erlangen, Germany). The imaging parameters were as follows: field 
of view = 350mm, matrix = 255 × 192 to 255 × 255, slice thickness = 8mm, slice gap = 2mm, TE/TR = 1.6/3.1 
msec, pixel bandwidth = 930 kHz, flip angle = 60_ and segment size = 5-9 lines depending on heart rate. We used 
two circles from the endocardium center as manual initialization. 
 
The mean values of EDV, ESV and LVEF calculated from 10 studies by using manual segmentation and proposed 
algorithm are presented in Table 1 and Bland-Altman plot is provided in Figure 3. Segmentation results of 2D and 
3D volume for three cases are also presented in Figure 1. 
 

 

Proc. of SPIE Vol. 7259  72593T-6



E -

4,

0

2

4'

4, -

15

-10
0

a
0

0

C

.2

-4

8-

*

*

- 21' 30 40 50 80 70 80
Average of manual and proposed aIonthar %)

15
80 1 L'S 120 140 160 180 200 220

Avrae of manLiji nd propzsed algonthrn ml)

 

 

Fig. 1. Experimental results with ED and ES phases of three subjects (from top to bottom) shown on 2 selected slices in each case. 
Manual segmentation results of endocardium (green) and epicardium (yellow) are shown in first and third column and results of 
proposed algorithm are presented with endocardium (red) and epicardium (white) using same images in second and fourth column. 
Automatically segmented, 3D endocardial surface (orange) with epicardial surface (yellow mesh) is presented in the rightmost 
column. Algorithm parameters were selected empirically and were the same same for all  images (α = 400, β = 30, λ =400 andσ = 
2). 
 
 

Table 1. Comparison of the manual segmentation and proposed algorithm 
 

 Manual 
Segmentation 

Proposed 
Segmentation 

EDV (ml) 140± 44 139± 41 
ESV (ml) 69± 45 68± 49 

LVEF (%) 55± 16 55± 19 
 
 
The mean values of EDV, ESV and LVEF calculated from 10 studies by using manual segmentation and proposed 
algorithm are presented in Table 1 and Bland-Altman plot is provided in Figure 2. Segmentation results of 2D and 
3D volume for three cases are also presented in Figure 1. 
 
 

 
                                  (a) EDV                                                           (b) LVEF 
Fig. 2. Bland-Altman plots for EDV and LVEF 
 
 

5. CONCLUSION 
 
 

We have proposed a novel shape constraint to segment the epi- and endocardium of LV simultaneously. This shape 
constraint assumes the dual shape similarity between epi- and endocardium and its agreement with visual 
segmentation has been shown by the experimental results on cardiac MRI data. Currently, the only manual 
interaction is required at the initialization step that is desired to be specified automatically. 
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The segmentation algorithm incorporating our implicit shape prior knowledge can be used to segment related 
shapes simultaneously. It can be applied to segmentation of the epi- and endocardium of LV from cardiac MRI. We 
achieved robust results in initial evaluation.  
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